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ABSTRACT
Information about world events is disseminated through a wide
variety of news channels, each with specific considerations in the
choice of their reporting. Although the multiplicity of these out-
lets should ensure a variety of viewpoints, recent reports suggest
that the rising concentration of media ownership may void this
assumption. This observation motivates the study of the impact
of ownership on the global media landscape and its influence on
the coverage the actual viewer receives. To this end, the selec-
tion of reported events has been shown to be informative about
the high-level structure of the news ecosystem. However, existing
methods only provide a static view into an inherently dynamic sys-
tem, providing underperforming statistical models and hindering
our understanding of the media landscape as a whole.

In this work, we present a dynamic embedding method that
learns to capture the decision process of individual news sources in
their selection of reported events while also enabling the systematic
detection of large-scale transformations in themedia landscape over
prolonged periods of time. In an experiment covering over 580M
real-world event mentions, we show our approach to outperform
static embedding methods in predictive terms. We demonstrate
the potential of the method for news monitoring applications and
investigative journalism by shedding light on important changes in
programming induced by mergers and acquisitions, policy changes,
or network-wide content diffusion. These findings offer evidence
of strong content convergence trends inside large broadcasting
groups, influencing the news ecosystem in a time of increasing
media ownership concentration.

CCS CONCEPTS
• Information systems→Datamining; •Computingmethod-
ologies → Learning latent representations.
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Figure 1: Illustration of the setting: we observe the coverage of
news events from a fixed set of sources over several time epochs.
Example events are extracted from the GDELT database.

1 INTRODUCTION
Information about world events is reported as a continuous stream,
processed then broadcast to an audience through a large number
of channels and across various mediums. As no coverage could
claim to be exhaustive, sources must first filter the stories that will
be disseminated. The selection made by each channel is partial by
nature. However, the variety of outlets, each with a wide array of
considerations in the choice of its reporting, is assumed to ensure
the diversity of news to which the reader is exposed to. This prin-
ciple is often referred to as the external pluralism assumption. It
should ensure heterogeneity in the media space, encapsulating any-
thing from the diversity of ownership to the independence of the
editorial board. 1 External pluralism is also known as the “supplier”
pluralism, since it should exclude the possibility of large broadcast
groups exerting influence on downstream reporting. Yet in practice,
this assumption does not always hold. News channels are often
owned or operated by commercial, private entities, implying that
the ecosystem as a whole is influenced by economically motivated
forces, such as mergers, acquisitions, or regulatory actions. The
increase in concentration of ownership has been observed to be
the dominating force in the media landscape, as reported by the
Pew Research Institute in a 2017 study on the acquisition of local
television stations. 2

While the literature, discussed in more detail in Section 2, still
debates the causal effects of market ownership structures on the
diversity of offerings, the Federal Communications Commission
(FCC) 3 has defended the idea that “there is a positive correlation
between viewpoints expressed and ownership of an outlet”. 4 This

1As opposed to internal pluralism, where sources are assumed to present a wide variety
of ideological viewpoints, communicated through different mediums. [8]
2http://www.pewresearch.org/fact-tank/2017/05/11/buying-spree-brings-more-local-
tv-stations-to-fewer-big-companies/
3The FCC is the regulating body for multimedia communications in the United States.
4FCC, Biennial Media Ownership Order (2003)
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uncertainty strongly motivates the development of novel and inter-
pretable methods, which would allow the observation of large-scale
movements in the media landscape and allow correlating the ob-
servations with real-world factors.

Recent studies have tackled the problem of evaluating similari-
ties across news sources [5, 38] and have found that the analysis
of coverage patterns can highlight non-obvious relationships be-
tween sources, such as the aforementioned corporate ownership
structures. However, they have only captured a static snapshot of
the media landscape. This hinders the ability to observe changes in
content diffusion, and limits attempts to correlate the observations
with potential factors in the news space. These models’ predictive
power is also limited by their inability to incorporate temporal de-
pendencies. In other words, it restricts them to an informative but
partial and static view of the news ecosystem. Indeed, the model of
any dynamic system requires a time-dependent formulation, neces-
sary to detect variations and measure trends. Existing approaches
are blind to such transient effects.

Studying the effect of real-world factors on content diffusion is
a challenging task. It requires the detection of subtle variations in
the coverage patterns of individual channels, which can occur over
long time spans. Any attempt to characterize these effects would
suffer from the absence of a ground truth, prompting the need for
a comparison across news channels. While similarities between
channels are straightforward to compute for short, consistent peri-
ods of time, the continuous occurrence of new and unpredictable
events breaks the ability to reason across successive snapshots of
the news. A successful estimate of similarity over time should hence
maintain temporal consistency of pairwise distances across news
channels. At any given point in time, it should ideally do so without
compromising its predictive accuracy compared to static methods.
These challenges and constraints motivate the use of the models
presented here.

In this work, we propose a dynamic embedding model of the me-
dia landscape. By predicting news sources’ coverage, the model
captures their similarities throughout the observed period. The em-
bedding space is maintained consistent over time by augmenting
the model with a knowledge of previous time steps, and by adding a
temporal regularization on the model’s parameters. This improves
the model’s predictive capabilities and provides a temporally coher-
ent source-wise similarity metric, allowing the visualization and
analysis of long-ranging fluctuations in the news ecosystem. We
also propose a systematic method to detect abrupt transition pat-
terns in this similarity space. This enables the analysis of the news
ecosystem beyond domain-specific knowledge and hand-crafted
analysis.

In the context of news reporting, temporally-aware models pro-
vide a powerful tool for correlating content programming changes
and real-world factors, from individual news outlet’s behaviors to
large-scale dynamics. Shining a light on these movements would
naturally guide the search for source-level context, helping to char-
acterize and identify the observation’s driving forces. This infor-
mation could then provide context to journalists investigating the
coverage of a particular story or feed watchdog-like processes that
monitor the health and evolution of the media landscape. To illus-
trate, we provide some prototypical questions which could arise in

a journalistic probe, and that could be elucidated by information
derived from the proposed model:

• What effect does the ownership of a news channel have on
its content diffusion?
• Which sources are most similar (resp. dissimilar) to a sample
source, and how has this similarity evolved over time?
• Which are the most consistent (or varying) news channels
in terms of broadcast content?
• Which broadcast groups exert a large influence on the con-
tent of their respective channels?

The rest of this paper is organized as follows. In Section 2, we
present relevant work from the literature. In Section 3, we describe
the dataset used in our study. In Section 4, we introduce our model.
In Section 5, we discuss the predictive performance of the model. In
Section 6, we illustrate the use of our model in the identification of
abrupt changes the media landscape, attempting to interpret these
changes in coverage in Section 7. In Section 8, we conclude and
propose future research directions.

2 RELATEDWORK

The study of the evolution of the media landscape has led to
prolific research lines spanning various fields. Early work had a
tendency to examine the media ecosystem in isolation. For exam-
ple Steiner’s seminal work [43] studies the interplay of consumer
preferences and in-market competition on the diversity of radio
broadcasting. This study omitted the role of external driving forces,
which were only later modeled by Anderson & Coate. [3] They
predicted that media consolidation, while economically beneficial
for the market, would reduce competition and hence diversity for
the viewer. This insight was later formulated in terms of ideological
bias by Gentzkow & Shapiro [10] in the case of newspapers.

The tendency to integrate external driving factors has picked up
steam in recent years, most notably with a theory of convergence
in the media ecosystem. This convergence expresses itself through
two seemingly contradictory features. On one hand, information is
being delivered through an ever-increasing number of channels and
means of diffusion. On the other hand, media ownership concentra-
tion has seen an upwards trend, with a large proportion of channels
being owned by only a handful of media conglomerates. [31] This
dichotomy has been studied by, among others, Jenkins. [20] The
author proposed a sketch of the phenomenon that looks further
than the sole technological influence, reaching for larger cultural
factors. Vizcarrondo et al. [45] have more specifically investigated
the concentration of media ownership. They reported on changes
in the diversity of ownership within the media industry covering
the 1976 through 2009 time period.

A large body of work has also been introduced to study the
effect of an ideologically slanted press. For instance in a large-scale
observational study, DellaVigna et al. [6] measured the effect of the
introduction of a conservative-oriented channel (Fox News) led to
gains of 0.4 to 0.6 percentage points in Republican voting in the
towns where the channel was being broadcast. While specific to a
particular orientation, this work is in line with studies showing the
profound influence of the media in voters’ political awareness [27]
and their participation in the electoral process. [11, 12, 28]



Notation Description

R Interaction matrix ∈ R |S |× |E |
S / E News source / Event set
E+si Set of events covered by source si
si Source si ∈ S
ek Event ek ∈ E
K Number of latent factors
x̂si ,ek Predicted preference of source si for event ek
D / Ds Training / Testing set
γ STD of the Gaussian random walk
α Learning rate
λΘ ℓ2-regularization weight
λT Temporal regularization weight
Θ Set of model parameters

Table 1: Notation

The Federal Communications Commission (FCC) regularly issues
studies regarding the state of the news ecosystem. Specifically, some
of these studies focus on the effect of ownership on local news
stations’ content programming behaviors. However, by the authors’
own admission 5, these works often lack the breadth required by a
large-scale empirical study. For example, Pritchard [32] conducted
a study of the diversity of coverage for cross-owned media outlets
during the 2000 presidential campaign but on a sample of only 10
newspapers. Groseclose & Milyo [16] proposed a measure of media
bias which was evaluated on a set of 8 newspapers. Djankov et
al. [7] did survey the news ecosystem on large scale, building a
map of media ownership in 97 countries around the world, but this
work dates back to 2003.

Dimensionality reductionmethods have been extensively used
to model different perspectives or opinions. For example, Lahoti
et al. [24] rely on Non-Negative Matrix Factorization methods to
learn a liberal-conservative ideology space on Twitter. In particular,
the authors propose to approximate the users’ ideology based on
their online news consumption.

The study performed by Saez-Trumper et al. [39] relies on a Prin-
cipal Component Analysis (PCA) to detect similarities across news
channels. In particular, they performed their analysis by covering
three different types of biases in the press: gatekeeping bias, cover-
age bias and statement bias. The authors’ bias-capturing method
does present similarities to our approach, but is formulated as an
unsupervised approach and does not tackle temporal variability.
Recently, Bourgeois et al. [5] proposed a supervised, embedding-
based method to capture similarities across news sources based on
their respective coverage. This model was also designed statically
and is hence unable to accurately model temporal variations in
news coverage.

Learning to produce a personalized ranking from positive inter-
actions only is a well-studied problem that has been investigated in
the context of recommendations from implicit feedback [30] and as
One-Class feedback [19] in the context of recommender systems.

5“[a] larger number of independent owners will tend to generate a wider array of
viewpoints in the media than would a comparatively smaller number of owners. We
believe this proposition, even without the benefit of conclusive empirical evidence.”
FCC, Biennial Media Ownership Order (2003)

Temporally-aware methods have received increasing attention
and many previous models have now been adapted to the temporal
setting. The dynamic embedding, proposed by Rudolph et al. [36] as
a variation of traditional embedding methods, is generally aimed
toward temporal consistency. The method is introduced in the
context of word embeddings, which are used to characterize the
evolution of English language. The model is built upon the initial
exponential family embeddings model. [37]

The field of personalization has many examples of temporally-
aware models since human preferences tend to evolve over time. For
example, influential work from Koren et al. [22] models the chang-
ing nature of preference through a linear drifting term. Another
approach relies on the use of Tensor Factorization (TF), [1, 9, 46] in
which the extra dimensionmodels temporal patterns in the data.We
do not consider TF-based methods as valid candidate approaches
since we focus on the problem of grounding representations over
time by penalizing unnecessary differences between successive solu-
tions of the model. The temporal modelling capabilities of TF-based
methods would predict the evolution of sources and introduce addi-
tional temporal variations, consequently degrading interpretability.

He et al. [18] introduced a temporally-aware model of a rec-
ommender system in order to capture the evolution of fashion
trends. Similar to Koren et al. [22], the authors also proposed the
addition a drifting term to the model. The authors later proposed
the use of a higher-order Markov chain that captures both short-
and long-term dynamics [17]. Note that both models make use
of Bayesian Personalized Ranking (BPR [35]) for their respective
optimization procedure. In the context of networks, Yu et al. [48]
proposed a temporal factorization for analyzing the evolution of
network structures.

The media response to global events has been studied, with
many using the same data-source as our work. However, these
approaches have focused mainly on content-level analysis, lever-
aging the multimodal capabilities of the GDELT dataset (please
refer to Section 3 for more detailed information about the dataset).
These works have monitored the media response to events such
as protests, [33] natural disasters [23] or conflicts. [14, 21, 47] This
data-source was also used to get a world-wide view on coverage of
global issues like climate change. [29]

Research Questions: Given the work above, several research
questions are of our interest and have remained unanswered:

RQ1: How can we model the global media landscape over time?
RQ2: Is media consolidation highlighted by the resulting latent

representation?
RQ3: How to systematically detect abrupt deviations in content

diffusion at a source-level?

3 DATA
In this section, we present the selected data source and explicit
our data collection process, providing general statistics about the
resulting dataset.



GDelt Dataset

# sources 7 278
# unique events 174M
# interactions 588M
time span Feb 2015 - May 2018

Table 2: Meta-data about the dataset (after preprocessing)

3.1 Data Source
Recently, several event collection databases have emerged on the
Web, making accessible to the general public a global view of the
daily world events. In this work, we rely on the Global Database
of Events, Language, and Tone (GDELT [26]), a large database of
annotated news events. GDELT 6 was selected since it is publicly
available and covers a reasonably large timespan and geography,
offering a larger set of sources [2] to study compared to alternatives
such as EventRegistry. 7

For decades, event coding was performed manually. In the 1990s,
the first automated systems started to gain traction in the academic
community, with initiatives such as the KEDS system. [40] Its suc-
cessor was proposed in the form of Text Analysis By Augmented
Replacement Instructions (TABARI), which is the engine that runs
event coding for GDELT. This framework is designed to process
large amounts of text to extract the presence of pairs of actors and
verbs. To do so it matches elements from user-provided dictionaries,
which contain a massive collection of event protagonists (i.e. ac-
tors) ranging from recognizable named entities (e.g. Barack Obama)
to functional placeholders (e.g. a local woman). These actors are
able to interact with the world through verbs (i.e. actions), which
can be self-contained (e.g. announces their intent to) or involve a
second actor (e.g. criticizes their opponent). Several standards exist
for these dictionaries. GDELT uses the Conflict and Mediation Event
Observations (CAMEO [13]). 8 Note that, as a remnant of previous
hand-curated event annotation frameworks [25], TABARI also pro-
vides an interface for manual hand-off to domain experts if the
sentences become too complex. This reinforces GDELT’s ability to
uniquely annotate even the most fine-grained events.

GDELT also augments every news event it tags by extracting
meta-information about the article including, but not limited to,
its location, its tone, its Goldstein Scale [15] and refences the URL
the event was scanned at. It scours a wide array of sources, from
television stations to blogs, news wires and papers. Thanks to the
information provided by this augmented event coding framework,
GDELT assigns, for each news event, a global identifier, which
makes it possible to link the same event’s coverage across different
news sources. Beyond the rich annotations provided by GDELT,
this tracking is central to our study given that we only work at the
coverage level, without considering the content itself.

6https://www.gdeltproject.org/
7https://eventregistry.org/
8An exhaustive list of the considered categories can be found at
http://data.gdeltproject.org/documentation/CAMEO.Manual.1.1b3.pdf

Figure 2: Number of sources
covering an event.

Figure 3: Number of events
covered per source.

3.2 Data Preprocessing
From the massive resource maintained by GDELT we can gather
a dataset of interactions between sources and events, recording
which sources covered which uniquely identifiable events. We focus
our data collection campaign on the publicly available dumps of
GDELT 2.0, released every 15 minutes since February 2015. General
statistics about the dataset are presented in Table 2 as well as Fig. 2
and Fig. 3.

When considering the full time-span, GDELT references more
than 105K different news sources. This represents a considerable
increase compared to the 63K sources reported by Kwak et al. [2]
in 2016. However, as is shown in Fig. 3, most of the sources have
only published a few articles over the relevant stretch. To maintain
a consistent number of channels over time, we discard all channels
inactive in any one of the time slices from our dataset. This retains
around 7 278 news sources in our dataset. The filtering step does
remove a large fraction of available channels, but it mostly affects
sources with a very low publishing rate: despite preserving only
7% of the total channels, the selection still accounts for more than
76% of interactions in the dataset (see Fig. 3).

The dataset is split into slices with a duration of one month. This
allows for a decent trade-off between having a significant amount
of events covered in the training set, while also providing enough
samples to observe time-dependent changes over the considered
period. In principle, this scale could be modified to study the media
landscape at different granularity levels. For example, a more fine-
grained split might allow the observation of changes correlated
with specific events. However, we choose to leave this analysis as
future work given the significant amount of computation that the
model requires.

4 MODEL
In this section, we first motivate our approach. Then, we briefly
introduce the use of Matrix Factorization methods in a ranking
setting by formally describing the task and its objectives. Finally,
we propose two strategies to extend the model to a temporal setting.

4.1 Motivation
The main focus of our work is to establish a dynamic model of
coverage similarities across news channels in order (i) to uncover
congruent coverage patterns in the pool of available channels, (ii)
to establish a dynamic, predictive model of coverage and (iii) to



provide a systematic methodology to identify and interpret struc-
tural changes in the media landscape. Recent political and societal
focus on media accountability and transparency provide strong
motivators in the development of such tools (see Section 1).

We model the interrelationships between sources and events
by relying on a Matrix Factorization (MF) method. MF methods
represent a natural way of projecting two disjoint sets of items in
a common latent space of K dimensions in order to model their
interactions. Such personalized methods are commonly use by rec-
ommender systems, which routinely aim to model retail purchasing
decisions. Used in our context, they model coverage decisions in-
stead. We cast the problem to a One-Class learning setting [30]
since we observe positive interactions only. The One-class formula-
tion avoids making assumptions about negative examples: we do
not distinguish between real negatives (i.e. the source purposely
didn’t cover an event) and unobserved interactions (i.e. the source
wasn’t aware of the event).

4.2 Problem Statement
Let us consider a set of news sources S and a set of events E. Inter-
actions between the two are represented by an interaction matrix
R ∈ R |S |× |E | . Observations take the form of dyadic interactions
(si , ej ), si ∈ S, ej ∈ E which express source si ’s coverage of event
ej . Equivalently, we define in matrix form that Ri, j = 1 if source si
has covered event ej and Ri, j = 0 otherwise.

Predicting the unobserved entries of matrix R is achieved by tak-
ing the dot-product of two low rank matrices, such that
R ≈ PT ·Q , where P ∈ RK×|S | and Q ∈ RK×|E | with K << |S |, |E |.
Every source si (resp. every event ej ) is represented by a column in
P (resp. Q). We will refer to these columns as an embedding vector
throughout the remainder of this work. We will refer to Θ as the
set of parameters for our MF predictor, such that Θ = {P ,Q}.

Objectives: The model is trained with the objective of predicting
the likelihood of a source covering a particular event. The predicted
likelihood x̂si ,ej of source si covering event ej is computed as the
dot-product between the two respective embedding vectors,

x̂si ,ej = p
T
si · qej . (1)

Instead of best approximating the reconstruction of matrixR, this
objective is stated as a ranking problem in which positive examples
should obtain a higher rank than negative ones, i.e. to predict a
higher score for an event that has been covered than for random
negative samples. Optimizing a MF model with a ranking criterion
is equivalent to maximizing the following probability,

Pr(ej >si ek |Θ) B H (x̂si ,ej − x̂si ,ek )

≈ σ (x̂si ,ej − x̂si ,ek )
(2)

where ej is an event covered by source si and ek is a randomly
sampled negative event; formally, ej ∈ E+si and ek ∈ E \ E+si . We
adopt the notation >si to denote a source si preferring to cover ej
over ek and model the observation of this preference using H (·),
the Heaviside step function: H (·) is equal to 1.0 for positive inputs
and to 0.0 otherwise. Therefore, H (x̂si ,ej − x̂si ,ek ) would always be
equal to 1.0 for an ideal predictor. In practice, H (·) is approximated
by the differentiable logistic sigmoid σ (·).

Finally, we maximize BPR, our log-likelihood criterion

BPR B
∑

(si ,ej ,ek )∈D

lnσ (x̂si ,ej − x̂si ,ek ) − λΘ | |Θ| |
2 . (3)

Note the inclusion of an ℓ2-regularization term over the set of
parameters Θ. We please refer the reader to the work of Rendle et
al. [35] for more details about this optimization scheme.

4.3 Temporal Setting
In this section, we describe the adoption of the dynamic embedding
scheme proposed by Rudolph et al. [36] in the context of news cov-
erage modeling. In particular, we adopt two strategies to maintain
temporal consistency across time slices, respectively based (i) on a
Gaussian random walk (RW ) and (ii) on the addition of a temporal
regularization term (RG). We adopt the notation p(t )si to denote the
embedding vector of news source si at the t-th time step.

Prior on the embedding vectors: Without information about
former time slices, existing methods typically initialize embedding
vectors to small, randomly distributed values. However, such ap-
proaches do not take advantage of any prior knowledge acquired
during anterior training steps. The addition of a prior on embedding
vectors represents a simple, yet powerful strategy to leverage previ-
ously acquired knowledge about sources. In particular, embedding
vectors at the t-th time step are initialized using a Gaussian random
walk around their final values at time step (t − 1). The Gaussian
random walk is expressed as follows:

p
(t )
si ∼

{
N(0,γ−1I ), if t=0 .
N(p

(t−1)
si ,γ−1I ), otherwise .

(4)

This initialization scheme ensures a smooth transition of the
parameter set learned in two consecutive time slices. This yields
a more stable embedding space, offering a coherent expression of
divergence across time-steps. Since events are inherently much
more volatile than sources, we initialized their embedding vectors
at random at each new time slice.

Optimization using temporal regularization: The second part
of the dynamic scheme takes the form of a temporal regularization
term. The newly introduced term penalizes large variations across
time steps by minimizing the distance of an embedding vector at
the t-th step to its final value at step (t − 1).

The final log-likelihood criterion, BPR-T, can then be formulated
as follows for the t-th time split

BPR-T (t ) B
∑

(si ,ej ,ek )∈D

lnσ (x̂si ,ej − x̂si ,ek )

− λΘ | |Θ| |
2

− λT ∥p
(t )
si − p

(t−1)
si ∥2︸                 ︷︷                 ︸

temporal regularization

(5)



The model is optimized using stochastic gradient ascent and is
fitted once for every time split. Update steps are defined as follows:

q
(t )
ej ← q

(t )
ej + α(σ (−x̂si ,ej ,ek ) · p

(t )
si − λΘ q

(t )
ej )

q
(t )
ek ← q

(t )
ek + α(σ (−x̂si ,ej ,ek ) · (−p

(t )
si ) − λΘ q

(t )
ek )

p
(t )
si ← p

(t )
si + α(σ (−x̂si ,ej ,ek ) · (q

(t )
ej − q

(t )
ek )

− λΘ p
(t )
si

− λT (p
(t )
si − p

(t−1)
si ))

(6)

where α is our learning rate. We use the notation x̂si ,ej ,ek to de-
note the quantity (x̂si ,ej − x̂si ,ek ). Note that triplets (si , ej , ek ), ej ∈
E+si and ek ∈ E \ E

+
si forming the training dataset D are randomly

sampled during the optimization. 9

4.4 Evaluation
To assess the performance of the different methods, we adopt a
leave-one-out methodology, in which a single event per source is
withheld at random from the training set D to constitute the test
set Ds . This approach ensures that all sources have similar weights
in the evaluation. We adopt the widely used Area Under the Curve
(AUC) as a measure of performance. In the context of this work,
the evaluation procedure is formally defined as follows

AUC =
1
|Ds |

∑
(si ,ej ,ek )∈Ds

H (x̂si ,ej − x̂si ,ek ) . (7)

where ej is an event covered by si and ek is an event that si hasn’t
covered, randomly sampled at testing time. Negative samples are
drawn uniformly at random across all unique event of the current
time slice (we omitted the time indices for the sake of brevity).

4.5 Experimental Setting
The code for experiment and analysis will be made available at pub-
lication time under an open-source license. All experiment-related
code was run on a 6-core machine, equipped with an Intel(R)
Xeon(R) CPU E5-2630 @ 2.30GHz, for a total training time of ap-
proximately 3 days. 10 We restricted the tuning of hyper-parameter
λT to a subset of values ∈ {0.001, 0.01, 0.1, 1.0}. All scores and fig-
ures are reported using λT = 0.1, which we found to provide the
highest cross-validated accuracy. For computational reasons, the
other parameters were coarse-tuned on a static snapshot and were
set to K = 20 and λΘ = 0.1, γ = 0.01 and α = 0.1.

5 RESULTS
In this section, we compare the existing static embedding model
with the dynamic method presented in Section 4. The effect of both
the prior on the embedding vectors and the temporal regularization
are then measured in isolation.

Table 3 summarizes the performances of the various approaches
by taking the mean AUC scores obtained, for each month, over the
considered period. BPR denotes the core of the algorithm without
9We sampled both positive and negative examples uniformly. More complex sampling
approaches exist [34] but are outside of the scope of this work.
10The training time is reported for the full 3-year period; a production-ready application
would typically be optimized and use incremental updates instead.
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Figure 4: Average displace-
ment of embeddings

AUC

POP 0.6509
BPR 0.8959
BPR + RG 0.9089
BPR + RW 0.9318
BPR + RW + RG 0.9337

Table 3: Method contribution
to performance

any temporal component. RG denotes the use of temporal regular-
ization and RW denotes the use of a Gaussian random walk for
embedding initialization. To compare with a non-parametrized ap-
proach, we also include POP, a popularity-based baseline: the score
for a given event is a function of its frequency in the training set.

Several observations can be made in light of these results. Firstly,
the combination of the two strategies RG and RW is shown to
provide the best observed predictive performances. Secondly, the
individual strategies do not provide the same performance improve-
ments. Results suggest that a proper initialization contributes much
more to an accurate prediction than strong temporal regulariza-
tion. In parallel experiments, we even observed that an increase
of λT decreases performances. We hypothesize that this is due to
the model’s inability to handle abrupt changes in source behavior,
since a strong regularizer would penalize a large difference with
respect to the previous time step.

The use of the proposed dynamic strategies (RG and RW ) pro-
vides better overall consistency of the latent space across time slices.
This is visible by measuring the average displacement of sources
in embedding space. As shown in Fig. 4, sources are much more
stable in the dynamic setting compared to the static embedding
procedure. The added stability of the embedding space provides
a usable expression of divergence across time-steps. This means
source similarity can be coherently compared across the entire ob-
served period, while also providing an overall improvement of the
AUC scores (see Fig. 5).
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Figure 5: Performances (AUC) and dataset size per month
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Figure 6: Case-study of the influence of ownership on the selection of covered events (best seen in color)
Left: Sample of the temporal evolution of the media landscape, learned with dynamic embeddings, illustrated with t-SNE. [44] To test the
effect of ownership on diversity of coverage, we monitor the evolution of a set of sources all owned by the same broadcast group in 2018,
backtracking their evolution in embedding space. Starting with an initial seed source known to be operated by - or affiliated to - one of three
large American media conglomerates (Gray Television Inc., Sinclair Broadcasting Group and GateHouse Media), we build a set of 50 sources
per group so as to have a comparably sized sample for each. These sources are also all verified to be owned - or operated by - one of these
groups at the last observed time-frame of our dataset (May 2018) by cross-checking publicly available information. We project their positions
from the embedding space onto a display-friendly plane, showcasing snapshots of their movement over time, as they collapse into highly
similar and cohesive clusters in the similarity space.
Right: Average inter-source cosine distance between sources of each group in the dynamic embedding space, over time.

6 ANALYSIS
In the following section, we discuss the interpretation of the model
introduced in Section 4. We first describe an approach to visualize
the evolution of the news ecosystem. Then, we propose a systematic,
unsupervised way to detect abrupt deviations in this space.

6.1 Visualizing the Media Landscape

We start by introducing an example case-study, which should il-
lustrate the usefulness of the presented model in facilitating the
understanding of the news ecosystem. The study is centered on
three representative media conglomerates that we track throughout
the 40-month period covered by our dataset: Gray Television Inc.
(over 100 television stations), Sinclair Broadcasting Group (over 190
television stations) and GateHouse Media (over 140 newspapers). 11

As a starting point, the model described in Section 4 is optimized
in its most successful setting (RW+RG). Dimensionality reduction
is performed in order to have a more interpretable view into the
embedding vectors. In Fig. 6 - (left) we use a t-distributed Stochastic
Neighbor Embedding (t-SNE [44]), a popular method for the visual-
ization of high-dimensional data. In order to maintain consistency
across time steps in the projection, we initialize the parameters of
the t-SNE optimization procedure at time slice t with the final pa-
rameters of time step t−1. This seeds the projected points’ positions
instead of assigning them to a random initial position, allowing for
easier tracking between time steps.

Additionally, in order to avoid interpreting from model parame-
ters only, which might be misleading due to optimization artifacts,
we correlate sources’ trajectories with the average pairwise co-
sine distance between sources of each group. These distances are
computed using sources’ respective sets of covered events for each

11as of August 2018.

month. Overall, this procedure allows us to coherently visualize
the evolution of the media landscape over time, uncovering non-
obvious dynamics at several scales, from the ecosystem as whole
(e.g. convergence phenomenons) down to individual sources (e.g.
shift toward a group).

The designed visualization of the media landscape is presented
in Fig. 6. Please refer to Section 7 for a more detailed discussion.

6.2 Detecting Fluctuations in the Media Landscape

Even with extensive domain knowledge, tracking the evolution of
a group of sources belonging to specific entities remains a tedious
task, since it requires the manual identification of sources of in-
terest and the validation of their common factors. Therefore, in
the following section, we propose an unsupervised method which
leverages the models’ a priori knowledge to identify abrupt changes
in sources’ content diffusion patterns. In particular, the proposed
framework aims to identify attractors, e.g. sources that tend of
attract others in latent space, suggesting an alignment of coverage.

Attractors: News channels involved in a consolidation of resources
typically tend to have increasingly similar coverage patterns. As
seen in Fig. 6 - (right), the phenomenon manifests itself as the
convergence of a subset of sources toward a common position in
embedding space. Systematically detecting such gatherings around
a common location, that we will loosely refer to as attractors, would
allow to interpret each of these patterns in isolation. We propose a
method in two steps. Firstly, we identify sources whose distances to
other channels are abruptly reduced at any point in time. Secondly,
we identify the absolute position towards which those sources tend
to converge.



Figure 7: Left: t-SNE [44] projection of the embedding space for May 2018, colors represent the weight wsi of each source si . Center:
Identified attractor map built from the attraction potential map (σ = 1.9, k = 500). Right: Detail and affiliation of attractors identified in
(center), with the set of 3 sources closest to the uncovered poles. Best seen in color.

We first define the matrix Z ∈ R |S |× |S | that represents the cu-
mulative difference of distances between any two news sources
over time. We compute such distances in relative terms in order to
avoid any drift component from the evolving latent space. More
formally, we define Z as follows.

Zi, j =
∑
t
∥p
(t )
si − p

(t )
sj ∥ − ∥p

(t−1)
si − p

(t−1)
sj ∥ , (8)

where ∥·∥ is the Euclidean norm. In this setting, two sources
whose distances are consistently reduced would produce a neg-
ative value of large magnitude in their corresponding entries of
Z . Therefore, we rely on the matrix Z to identify channels having
undergone large reductions of distance with other sources. In more
details, we retrieve from Z the k-sources having the largest nega-
tive cumulative difference with any other source, i.e. the minimal
value of each row in Zi, j . By taking into consideration only the
top-k , we can capture large shifts only and avoid considering small
movements due to random factors. Once identified, the relative
displacement of these k sources can be visualized in latent space. In
particular, each source si in our dataset will be qualified by a single
weightwsi , computed as the sum of the cumulative difference in Z
with respect to the k considered sources. As shown in Fig. 7 - (left),
negative values reveal sources that tend to exhibit agglomerative
behaviors.

Until now, we observed strong fluctuations in terms of inter-
source distances. The next step is to define a systematic way of
identifying the centers around which these shifts occur, in abso-
lute terms and at any given point in time. On a 2D projection of
sources, we apply a weighted Kernel Density Estimator (KDE), a
non-parametric method for estimating the Probability Density Func-
tion from a set of samples, under weak smoothness assumptions.
The objective is to detect areas containing a high density of sources
with negative weights and locate their density peaks. We use the
weightswsi as input of the estimator. The bandwidth selection is a
function of the data’s covariance, multiplied by a constant factor

σ . [42] An example of the resulting density is presented in Fig. 7 -
(center). Finally, local extrema are collected using a local minimum
filter, a simple method routinely used in computer vision. The set
of identified poles and the top-3 closest sources surrounding them
is shown in Fig. 7 - (right).

Attractees: Having identified a set of attractors in latent space,
the dual observation can be made: the identification of sources that
experienced large movements in latent space toward any of the
previously identified attraction poles. These are sources that have
been strongly influenced by external forces, for example in the
content consolidation phase after an acquisition. The detection of
these phenomenon is done relative to a specific pole of attraction. In
order to track the distance to a pole over time, we start with a set of
seed sources. An obvious choice is to study the top-3 closest sources
from the poles, detailed in Fig. 7 - (right). The ranking of sources
having undergone a large shift can once again be made systematic.
In particular, we rank sources according to the largest difference
in distance to the pole between two consecutive time steps. The
distance to the centroid of these sources yields the distance maps
shown in Fig. 8 for the top-4 sources with the largest shifts.

7 DISCUSSION
The structure of the news landscape is in a constant state of flux. It
is often difficult to follow the evolution of its organizational struc-
ture and even more so to determine what influenced these changes.
In this section, we discuss how the fluctuations of broadcast pat-
terns can be informative about channels’ organizational structure.
We report that important changes in this structure are identifiable
through abrupt shifts in content diffusion, and showcase themodels’
ability to systematically highlight this variability in the coverage
space.
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7.1 Observing the effects of ownership on the
media landscape

The selection and diffusion of events by individual news channels
could be influenced by a large number of factors, from obfuscated
economic drivers to convoluted distribution schemes. Theoretically,
the external pluralism assumption would prevent large-scale orga-
nizational changes in news outlets from inducing significant shifts
in coverage. Our findings question the validity of this assumption.

We provide evidence that ownership can indeed exert its in-
fluence on the content being distributed downstream. The most
distinct and recurring pattern pointing to this conclusion is the
subsequent alignment of coverage patterns after an outlet’s acqui-
sition. Some examples are clearly observable in Fig. 6, such as the
acquisition of 14 stations from the Bonten Media Group by Sin-
clair Broadcasting Group (SBG) in a deal completed on September
1st, 2017. 12 Visible through the lens of a decrease in the average
inter-source distance of the Sinclair stations, this consolidation of
coverage can also be tracked in the embedding spaces’ visualization
in Fig. 6 - (left). This can be observed in Fig. 8 as well, albeit with a
slight delay with a sharp decrease in the distance from channels like
wcyb.com, wcti12.com or krcrtv.com to the center of the Sinclair
attraction pole (#8 in Fig. 7).

We observe similar behaviors during others large-scale acqui-
sitions, for example in the purchase of a group of assets from the
Morris Publishing Group by GateHouse in August 2017. 13 Other
observations of this phenomenon include the sudden increase in
coverage similarity of Gatehouse-owned stations around April 2017
(see Fig. 8 - right). While not directly correlated to a specific merger
or acquisition, these movements could hint at a company-wide
content alignment campaign.

12https://tvnewscheck.com/article/103465/sinclair-buying-bonten-stations-for-
240m/
13https://www.poynter.org/news/gatehouse-acquires-morris-publishings-11-daily-
newspapers

Such observations also support the convergence hypothesis. The
visualization in Fig. 6 exemplifies this effect: many of the sources
that are present in one of these group’s media portfolios start out
from vastly different regions in embedding space. This is visible
in their high initial average cosine distance in Fig. 6 - (right) and
their dispersed placement in Fig. 6 - (left). In the last frame however,
these same sources form highly coherent, tight groups in embedding
space - and in the visualization. Despite the fact that this case-study
back-tracks the evolution of sources across time, explaining the
density of the last frame, their convergence points to a unification
of coverage patterns over time.

7.2 Detecting highly influential broadcast
groups

News outlets present complex content distribution schemes, as is
particularly visible in television broadcasting: the on-air content is
produced by a wide range of affiliates, from well-known household
names to in-house teams, 14 being distributed through channels
with another, often different set of owners. While the consolida-
tion of broadcast material for economies of scale or investigative
resources for economies of scope can be economically beneficial for
the broadcaster, it is also potentially deceitful for a news consumer,
as the exact origin of the broadcast content is not always known. By
extension, the unique slant it carries in its selection of news is not
clearly obvious. Not only does it carry is unique biases in terms of
the way in which it covers the content, a topic not discussed in this
work, but it also has the ability to over-emphasize or under-report
certain events with little accountability.

This influence on coverage can be observed when interpreting
the agglomeration dynamics highlighted by Fig. 7. Information
sinks can be highlighted through the discovery of attraction poles
in the embedding space.

14A study conducted by Pew Research in 2014 already demonstrated a steady decline
in locally produced content, with 1 in 4 local news stations not producing any of their
own content [31].



Such sets of highly accretive sources, i.e. sources that draw other
sources to align with their coverage, cluster neatly into large broad-
cast entities, some of which have been mentioned before. Fig. 7-
(right) presents these groupings more exhaustively. The three large
media groups chosen for analysis in Fig. 6 are present (Gray Tele-
vision Inc., Sinclair Broadcasting Group and GateHouse Media Inc.),
along with several other large players in the American media land-
scape.

Previous studies [41] and [4] have studied differences in terms of
the types of content covered in television and newspapers outlets,
finding that TV stations cover proportionally more “global” news
than newspapers. Television is traditionally thought to be more
impacted by media consolidation for this reason: content is costly
to produce, hence it makes sense for large entities to share their
footage at scale. In our model, this should intuitively lead to the
flagging of television conglomerates as the strongest attractors,
with high content similarities. However, we observe in Fig. 7 that
all mediums are represented and impacted by the convergence phe-
nomenon. This could hint to the effect a convergence of mediums
can have on the media landscape, with the efficacy co-ownership
regulations being jeopardized by the all-encompassing nature of
online content delivery.

7.3 Interpretation of the temporal consistency

None of this qualitative analysis would be possible without a tem-
poral consistency constraint on the embedding space. Without such
stability, the model could take advantage of an unnecessarily large
number of degrees of freedom to align sources. In consequence,
it would converge to very different solutions from one epoch to
another. Due to the stochastic nature of the procedure, coverage
changes would be rendered indistinguishable from optimization
artifacts (see Fig. 3). By penalizing sources that deviate from their
previous positions, only significant coverage changes can force a
source to migrate to a different region in space. In other words, in
order to provoke a displacement, the channels’ coverage should
differ enough from the previous time step to outweigh the temporal
constraint. If this condition is met, the source will converge towards
a different neighborhood that better fits its coverage patterns, typi-
cally getting closer to similar channels.

This variability in time can be tuned through the regularization
parameter λT , as detailed in Section 4, providing a way to highlight
more global dynamics - in the case of strong regularization - or
more individual variations - with weak regularization. We also
observe that the constraint provides predictive gains. This can be
explained by the accumulation of knowledge about sources over
time. This last hypothesis is corroborated by the pattern observed
in Fig. 5, in which the accuracy reaches its maximum after the first
few epochs before stabilizing until the end of the considered period.

8 CONCLUSION

This work tackles the problem of dynamically modeling the filter-
ing decisions of individual actors of the news ecosystem. Beyond
the predictive capabilities of the approach, the knowledge gathered

by the model is leveraged to characterize the evolution of the me-
dia landscape over time. Firstly, we report performance benefits
of adding a temporal component to a coverage prediction model.
In particular, we show that a dynamic embedding model is able to
outperform existing approaches thanks to its ability to propagate
knowledge obtained from former time slices to the current predic-
tion step. Secondly, we demonstrate the application of this model
as a framework in which to reason about the latent structure of
media landscape, modeling the temporal evolution of news outlets’
decision processes. Maintaining a consistent latent representation
of sources’ preferences enables powerful interpretation and visual-
ization methods, highly effective in investigating shifts in the media
ecosystem, at a large scale but also at the individual source level.

We demonstrate the potential of the method on several channel
acquisition campaigns. We show drastic post-acquisition content
alignment in channels belonging to large, well-known broadcast
conglomerates. This corroborates the hypothesis of deep consolida-
tion of broadcast material inside news networks. Our work high-
lights the fragility of the external plurality assumption, which is
supposed to guarantee a diversity of ownership and hence view-
points. Finally, we automate this investigative process and explore
several strategies to systemically identify abrupt variations in the
news ecosystem, fingerprints of sharp changes in media program-
ming.

Future work: The main focus of this work was to provide a clear
and insightful representation of the news landscape, and we fore-
see several directions to pursue this research effort. Firstly, the
method is ripe for the addition of content-based refinements. Our
approach focuses on the information’s propagation patterns but
it is still blind to the content itself and the way it is handled by
news outlets. We could for example mention in this vein a semantic
analysis of the covered articles. The fact that the model is content-
agnostic can however be of great use for its application to other
domains. Such methods could be applied to other dynamic systems
in which information propagates and evolves, such as online social-
networks, knowledge bases or citation networks. Lastly, as has been
highlighted throughout this work, particularly in the context of
the case-study, we believe that our work would strongly benefit
from an interdisciplinary approach, providing tools to journalists,
policy-makers or economists, whose expertise would also add great
insight to our analysis.
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